Palindromic Linearizations of a Matrix Polynomial of Odd Degree Obtained from Fiedler Pencils with Repetition
نویسندگان
چکیده
Many applications give rise to structured, in particular T-palindromic, matrix polynomials. In order to solve a polynomial eigenvalue problem P (λ)x = 0, where P (λ) is a T-palindromic matrix polynomial, it is convenient to use palindromic linearizations to ensure that the symmetries in the eigenvalues, elementary divisors, and minimal indices of P (λ) due to the palindromicity are preserved. In this paper, we construct new T-palindromic strong linearizations valid for all palindromic matrix polynomials of odd degree. These linearizations are formulated in terms of Fiedler pencils with repetition, a new family of companion forms that was obtained recently by Antoniou and Vologiannidis.
منابع مشابه
Ela Palindromic Linearizations of a Matrix Polynomial of Odd Degree Obtained from Fiedler Pencils with Repetition
Many applications give rise to structured, in particular T-palindromic, matrix polynomials. In order to solve a polynomial eigenvalue problem P (λ)x = 0, where P (λ) is a T-palindromic matrix polynomial, it is convenient to use palindromic linearizations to ensure that the symmetries in the eigenvalues, elementary divisors, and minimal indices of P (λ) due to the palindromicity are preserved. I...
متن کاملPalindromic linearizations of a matrix polynomial of odd degreee obtained from Fiedler pencils with repetition
Many applications give rise to structured, in particular T-palindromic, matrix polynomials. In order to solve a polynomial eigenvalue problem P (λ)x = 0, where P (λ) is a T-palindromic matrix polynomial, it is convenient to use palindromic linearizations to ensure that the symmetries in the eigenvalues, elementary divisors, and minimal indices of P (λ) due to the palindromicity are preserved. I...
متن کاملLarge Vector Spaces of Block-symmetric Strong Linearizations of Matrix Polynomials
M. I. BUENO∗, F. M. DOPICO †, S. FURTADO ‡, AND M. RYCHNOVSKY § Abstract. Given a matrix polynomial P (λ) = Pk i=0 λ Ai of degree k, where Ai are n × n matrices with entries in a field F, the development of linearizations of P (λ) that preserve whatever structure P (λ) might posses has been a very active area of research in the last decade. Most of the structure-preserving linearizations of P (...
متن کاملA Unified Approach to Fiedler-like Pencils via Strong Block Minimal Bases Pencils
The standard way of solving the polynomial eigenvalue problem associated with a matrix polynomial is to embed the matrix polynomial into a matrix pencil, transforming the problem into an equivalent generalized eigenvalue problem. Such pencils are known as linearizations. Many of the families of linearizations for matrix polynomials available in the literature are extensions of the so-called fam...
متن کاملPalindromic companion forms for matrix polynomials of odd degree
The standard way to solve polynomial eigenvalue problems P (λ)x = 0 is to convert the matrix polynomial P (λ) into a matrix pencil that preserves its spectral information– a process known as linearization. When P (λ) is palindromic, the eigenvalues, elementary divisors, and minimal indices of P (λ) have certain symmetries that can be lost when using the classical first and second Frobenius comp...
متن کامل